
Problem 1.
The Game of Sim is a pen-and-paper game played on a complete graph on 𝑛 vertices, traditionally
𝑛 = 6. It’s a two-player game.
Initially, all edges of the graph are black or uncolored. The players take turns coloring any uncolored
lines.
One player colors in one color, and the other colors in another color, with each player trying to avoid
the creation of a triangle made solely of their color; the player who completes such a triangle loses
immediately.
You can play this game here.

(1.a) (1 point) Consider the case when 𝑛 = 4. Explain why both players have a drawing strategy.

When N = 4, there are a total of six edges in the graph. The following gameplay between
player 1 (playing with red) and player 2 (playing with blue) verifies that a drawing strategy
exists.

The configuration in (6) verifies that the game is a draw since there exists no triangle of
either colour.

(1.b) (1 point) Consider the case when 𝑛 = 5. Explain why both players have a drawing strategy.
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When N = 5, there are a total of ten edges in the graph. The following gameplay between
player 1 (playing with red) and player 2 (playing with blue) verifies that a drawing strategy
exists.

The configuration in (10) verifies that the game is a draw since there exists no triangle of
either colour.
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(1.c) (1 point) Consider the case when 𝑛 = 6. Explain why the game cannot end in a draw.

When N = 6, the total number of edges are 15. This can be proved using graph theory that
with N = 6 there exists at least one triangle of the same colour edges (or the game cannot
end in a draw).

Out of the six vertices, let us consider one vertex (say vertex 1). Being a part of a complete
graph, it will have been connected to all other five vertices with an edge. Applying the
pigeonhole principle, it can be confirmed that in the gameplay, at least 3 of its vertices will
be colored with a same color.

Now (in this case), consider the edges between the vertices 4, 5 and 6.

By analysis, it can be seen that if any of the edges (5,6), (4,5) or (4,6) are coloured in red,
this will guarantee a triangle with only red edges. However, if none of the edges is coloured
red, then the edges (5,6), (4,5), and (4,6) themselves form a blue triangle.

This proves that with N=6, the game cannot end in a draw, as there is a guaranteed
win for a player.

(1.d) (1 point) Consider the case when 𝑛 = 6. Recall that we used a “strategy stealing” argument
to establish that there exists a winning strategy for the first player in Chomp. Explain why a
similar argument fails here.
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A typical strategy-stealing argument for Sim goes like the following. Suppose the second
player has a guaranteed winning strategy, say S. We will try to convert S into a winning
strategy for the first player. The first player should make the first move randomly; after
that, the first player should pretend to be the second player, ”stealing” the second player’s
strategy and following strategy S, which, by hypothesis, will result in a victory for the first
player. Suppose strategy S calls for the first player to color an edge that has been chosen
at random. In that case, however, this will interfere with the execution of S since having
a marked edge will be a disadvantage for the first player’s gameplay. This implies that the
existence of a winning strategy for the second player does not mean a winning strategy
exists for the first player (this also suggests that a winning strategy for the second player
may exist). Thus, unlike Chomp, a strategy-stealing argument does not apply in Sim.

Problem 2.
Lata and Raj are playing a game called Keep and Split. They start with two piles of coins, one of
size 𝑀 and one of size 𝐾. On a player’s turn, s/he takes away one of the piles entirely and splits the
other pile into two (non-empty) piles any way s/he wants. Whoever can’t make a legal move (i.e, is
presented with two piles of one coin each) loses. Note that taking as many coins as possible is not
the object of the game, though it may be a pleasant side effect.

(2.a) (1 point) Raj gets to decide whether to go first or second. What should he do when 𝑀 = 2018
and 𝐾 = 2019?

Raj should go first to ensure his win. He should discard the pile with 2019 coins and split
the pile 2018 into subpiles of size A and B where both A and B are odd numbers. This
should be his first move.

(2.b) (1 point) Describe a general condition that you can use to determine if (𝑀, 𝐾) is a winning
state for the first player.

The general condition to ensure win for the first player is as follows

If either of M or K is even, then it is a first-player win (assuming she/he players opti-
mally). Otherwise (if both M and K are odd) this is a second player win game.
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Problem 3.
Lata and Raj are still playing Keep and Split. Suppose Lata and Raj now have three different types
of coins. The game is now played with six piles of coins – two piles of each type. On a player’s turn,
he chooses a type of coins, takes away one of the piles of that type, and splits the other. Whoever
can’t move loses. If the numbers are (𝑀1, 𝐾1), (𝑀2, 𝐾2) and (𝑀3, 𝐾3), we want to understand: is
it better to go first or second, and what is the winning strategy?

(3.a) (1 point) Fill out the a 8 × 8 table of nimvalues for Keep and Split. The (M,K) entry of your
table should show the nimvalue of the game with piles of size M and K.
For example, the values for Row 1 are: [0,1,0,2,0,1,0,3].

The 8 ×8 table for nimvalues for Keep and Split can be formulated as
1 2 3 4 5 6 7 8

1 0 1 0 2 0 1 0 3
2 1 1 2 2 1 1 3 3
3 0 2 0 2 0 3 0 3
4 2 2 2 2 3 3 3 3
5 0 1 0 3 0 1 0 3
6 1 1 3 3 1 1 3 3
7 0 3 0 3 0 3 0 3
8 3 3 3 3 3 3 3 3

(3.b) (1 point) The game is (2, 4), (1, 8), and (3, 5). It is Raj’s turn. What should he do? Explain
how to derive the answer from your table.

The Nim values associated with the states (2,4), (1,8) and (3,5) are 2, 3 and 0 respectively.
The intuition is that if Raj plays either (2,4) or (1,8) and turns it to a zero state, the
opponent (Lata) will turn the other sub-game one between (2,4) and (1,8) that Raj did
not played to a zero state, making all three sub-games in zero (P) state. Now onwards,
whatever move Raj plays, the Lata has a counter move for that in the same sub-game!
Thus, Raj, at this point should not turn any of the two non-zero sub-games to zero P state.

Rather Raj should play the subgame (1,8) and turn it to (4,4). Now, Lata has no other
choice than either playing (2,4)→(2,2) or playing (4,4)→(2,2). This is because if she plays
any other move, this will turn that sub-game to a P state, which in turn means that Raj
can turn the last non-zero subgame to zero, and then it’s an easy win for him.

Now if Lata played (2,4)→(2,2), Raj should play (4,4)→(2,2), and if Lata played (4,4)→(2,2),
Raj should play (2,4)→(2,2). Then, in her next move, Lata has no other option but to turn
a (2,2) to (1,1). To counter that, Raj will turn the other (2,2) to (1,1). Now, whatever
moves Lata plays on the sub-game (3,5), Raj has a counter move for that. And its a win
for him.

(3.c) (1 point) Describe a formula (or algorithm) for computing the nimvalue of (𝑀, 𝐾) for all 𝑀
and 𝐾.
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The following are the inferences obtained by looking at the pattern created by a 8×8 matrix
of Nim Values.
Referring to the figures below -

• From (a), it is evident that the nim value is 0 at positions where M and K both are
odd.

• From (b), it is evident that the nim value is 𝑙𝑜𝑔2(𝐾) where K is a perfect square.
• From (c), we see there is a repetitive nature in the positions (1,2) (2,2) and (2,1). Note

that (c) is the valid nim table of size 2×2.
• If we focus on the submatrix (1:2, 3:4) of a nim value table of size 8×8, we see a similar

pattern. Entry (3,3) is 0 since both M and K are odd, and entry (1,4) is 2 as 𝑙𝑜𝑔2(4) is
2. Fig (d)

• Applying inference from figure (c), the entries (2,3) and (2,4) both are equal to entry
(1,4). Fig (e) and (f).

• Applying inference from (c) to a matrix of size 4×4, the table looks like Fig (g). This
is a valid nim table of size 4×4.

• From (h) it is evident that there exist a pattern between the alternate entries in the
table. We can, however extend this idea to a table of size 8×8. Fig (i) and Fig (j).

• Applying the inference obtained from (c), we can fill the sub table (1:2, 7:8). Fig (k)
and Fig (l).
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• Similarly, we can obtain a sub table (1:4, 5:8). Fig (m) and Fig (n).
• Similarly, we can obtain the 8×8 table for nim values. Fig (o).
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From the patterns inferred, we can formulate the nim table of size 16×16.

The table obtained is, indeed accurate nim table of size 16×16.
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Trivial Approach - Finding the MEX
The following algorithm, that is, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑖𝑚𝑡𝑎𝑏𝑙𝑒(𝑀, 𝐾) can be used to compute a table
of Nim values for Keep and Split game till the entry M, K.

The pseudocode of the algorithm is as follows -

algorithm find_subgames(X, Y){
return all the subgames from state (X, Y)

}
algorithm find_mex(subgames){

return the minimum excluded number among all the subgames
}
algorithm computeNimtable(m, k)
{

M = m + 1
N = k + 1
Nim_table = A 2d array of zeros of size (M, N)

for(line = 1, line < M+N, line++){
start_col = max(0, line - M)
count = min(line, (N - start_col), M)
for j in range(0, count)
{

X = min(M, line) - j - 1
Y = start_col + j
if(X == 0 or Y == 0)

continue
if(X%2==1 and Y%2==1):

Nim_table[X][Y] = 0
continue

subgames = find_subgames(X, Y)
mex = find_mex(subgames)
Nim_table[X][Y] = mex

}
}
return Nim_table[1:M+1, 1:N+1]

}

(3.d) (2 points) Argue why your proposed formula/algorithm works.
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Pattern based solution
The pattern-based solution indeed works as it satisfies all the constraints. Also, on cross-
validating with the results obtained using the trivial approach, I can confirm that the results
obtained from the pattern-based solution is accurate. // Results obtained from MEX

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4
2 1 1 2 2 1 1 3 3 1 1 2 2 1 1 4 4
3 0 2 0 2 0 3 0 3 0 2 0 2 0 4 0 4
4 2 2 2 2 3 3 3 3 2 2 2 2 4 4 4 4
5 0 1 0 3 0 1 0 3 0 1 0 4 0 1 0 4
6 1 1 3 3 1 1 3 3 1 1 4 4 1 1 4 4
7 0 3 0 3 0 3 0 3 0 4 0 4 0 4 0 4
8 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
9 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 4
10 1 1 2 2 1 1 4 4 1 1 2 2 1 1 4 4
11 0 2 0 2 0 4 0 4 0 2 0 2 0 4 0 4
12 2 2 2 2 4 4 4 4 2 2 2 2 4 4 4 4
13 0 1 0 4 0 1 0 4 0 1 0 4 0 1 0 4
14 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4
15 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Trivial Approach - Finding the MEX
The algorithm intends to explore all the possible subgames of the current configuration.
Based upon the Nim values of the subgames, it find the Minimum Excluded Number, which
is in turn the Nim value of the current state.

The algorithm, as a backbone uses dynamic programming. Initially, it starts with a 2d
array of zeros of size (M+1, K+1) (zero-index). Then it iterates along its main diagonal
across its other diagonal starting from 1,1, like (1,1) →(2,1) →(1,2) →(3,1) →(2,2) →(1,3)
and so on.

Iterating in this fashion ensures that all the possible subgames of an arbitrary game, say
(𝑚𝑛, 𝑘𝑛) is already explored before computing the MEX for (𝑚𝑛, 𝑘𝑛). Thus the algorithm
always computes the accurate Nim value for all entries in the table.

(3.e) (1 point) The game is (2, 4), (1, 8), and (2024, 2023). It is Raj’s turn. What should he do?
Explain how to derive the answer from your formula or pattern (even if you haven’t proved it).

The Nim values associated with the states (2,4) and (1,8) are 2 and 3, respectively. From
Question 3(b), we can infer that Player 1 has a winning strategy with a nim value combina-
tion of (2, 3, 0). Thus, in his turn, Raj should play the sub-game (2024, 2023) but should
not make it to zero states right away; rather, he should discard the pile 2023 and split the
pile 2024.
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Problem 4.
In the game of Corner A Piece, we are given a chess piece on a chess board that has been hit by a
diagonal plague, so it can only move south, west, and south-west.
Initially, we are given:

• a chess piece (e.g, rook, queen, knight, king, etc.)
• an initial location for said piece (e.g, (5,3))

We have two players who take turns to play. On their turn, the player can move the piece from
its current location to any location using a valid move that moves the piece in a south, west, or
south-west direction. Note that once the piece has reached the bottom-left corner square, there are
no legal moves left.
The player who cannot move loses.

(4.a) (1 point) Characterize the squares from which the first player can win if the piece is a king.
Note that the legal moves are given by the following image:
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The win/lose map of the chess board for King looks like

8 W W W W W W W W
7 L W L W L W L W
6 W W W W W W W W
5 L W L W L W L W
4 W W W W W W W W
3 L W L W L W L W
2 W W W W W W W W
1 L W L W L W L W

1 2 3 4 5 6 7 8

Here, W represents the winning positions (N) and L represent the Losing positions (P).

The general formulation goes like this,
Consider if the piece is at the location (X, Y) and its Player 1 to play its move,

• If both X and Y are odd, it’s a SAD (P) state for Player 1
• Otherwise, it’s a HAPPY (N) state for Player 1

The logic can also be formulated by the following algorithm

if (X%2 == 1) and (Y%2 == 1)
return SAD;

else
return HAPPY;
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(4.b) (2 points) Characterize the squares from which the first player can win if the piece is a knight.

Assuming that the board size is (∞, ∞), the win/lose map of the chess board for Knight
looks like

8 W W W W W W W W
7 W W W W W W W W
6 L L W W L L W W
5 L L W W L L W W
4 W W W W W W W W
3 W W W W W W W W
2 L L W W L L W W
1 L L W W L L W W

1 2 3 4 5 6 7 8

Here, W represents the winning positions (N) and L represent the Losing positions (P).

The general formulation goes like the following.
Consider if the piece is at the location (X, Y) and its Player 1 to play its move. If either of
the values of X, Y, X+1, or Y+1 is divisible by 4, then it is a HAPPY (N) state for Player
1. Otherwise, the position is a SAD (P) state for player 1.

The logic can also be formulated by the following algorithm

if (x+1)%4 == 0 or x%4 == 0 or (y+1)%4 == 0 or y%4 == 0:
return HAPPY

else
return SAD

Please note, the formulation is under the assumption that the board size is (∞, ∞). Oth-
erwise, validation is required for the positions (N, N) where N is divisible by 4.
This goes like this - if the board size is (N, N), and, if N is divisible by 4, then position (N,
N) is a SAD (P) state for Player 1.
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In that case, the table should look like -
8 W W W W W W W L
7 W W W W W W W W
6 L L W W L L W W
5 L L W W L L W W
4 W W W W W W W W
3 W W W W W W W W
2 L L W W L L W W
1 L L W W L L W W

1 2 3 4 5 6 7 8
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Supplementary - With the assumption that the Knight can move only in the
south-west direction. The solution goes like this.

Assuming that the game ends if a player has no valid move to play, the win/lose map of
the chess board for Knight looks like

8 L W W L W W L L
7 L W W L W W L L
6 L W W L W W W W
5 L W W L L W W W
4 L W W L L L L L
3 L W W W W W W W
2 L L W W W W W W
1 L L L L L L L L

1 2 3 4 5 6 7 8

Here, W represents the winning positions (N) and L represent the Losing positions (P).

The general formulation goes like the following.
Consider if the piece is at the location (X, Y) and its Player 1 to play its move. If the
values of X and Y are equal and X is not divisible by 3, the corresponding position is
a SAD (P) state for Player 1. If X≠Y and (X - 1) is divisible by 3 and Y is greater
than X, then it is a SAD state. Additionally, if X≠Y and (Y - 1) is divisible by 3 and X is
greater than Y, then it is a SAD state. In all other cases, the position is a HAPPY (N) state.

The logic can also be formulated by the following algorithm

if (X==Y) and (X%3)!=0
return SAD

else if (X-1)%3==0 and Y>X
return SAD

else if (Y-1)%3==0 and X>Y
return SAD

else
return HAPPY

Page 15 of 16



 
 
 
 

Part 1 
  



 

 Soumyaratna Debnath | Page 1 of 14 
 

 

Solution  

Problem – Marbles Elimination, that is, given a graph G = (V, E) and a marble count p(v) for each vertex 
v, whether is there a sequence of valid moves that removes all but one marble. 

To Prove – Marbles Elimination question is as hard as finding a Hamiltonian cycle in a graph. 

Let G with n vertices be the graph given in an undirected Hamiltonian Path Problem. The reduction 
from Hamiltonian Path Problem to Marbles Elimination problem can be deduced using the following 
strategy – 

Let that starting vertex of Marbles Elimination problem be v1. Let p(v) be the number of marbles at 
vertex v. The number of marbles in each vertex can be formulated as  

▪ If vertex v is the starting vertex, then p(v) = 2 
▪ Otherwise, p(v) = 1 

 

Since there are n possible starting vertices, it’s sufficient to check if there’s a Hamiltonian Path for 
each of these n possible starting vertices. 

Lemma –  

There is a Hamiltonian Path if and only if any of these Marbles Elimination problems is true.  

Claim 1 – There exist a sequence of Marbles Elimination moves removing all but one marble if and 
only if there exists a Hamiltonian Path. 

Let us assume that there exist a Hamiltonian Path v1 → v2 → …. → vn. Now, let’s consider the following 
marble elimination moves (v1, v2) (v2, v3) … (vn-1, vn). 
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Now, it can be observed that for any vi where 1≤ i < n, since (vi, vi+1) is in the Hamiltonian Path, then 
(vi, vi+1) must be an edge in G.  

Since (vi, vi+1) is the first marble elimination move that takes away marbles from vi, and since vi starts 
with at least one marble, then vi has all its starting marbles when attempt to do that marble 
elimination move. In the case that i = 1, then vi has enough marbles to do the move since it starts 
with two marbles.  

In the case that 1 < i < n, then (vi-1, vi) was the previous marble elimination move, so vi just gained a 
marble and started with one marble. So, vi has at least two marbles and has enough to marbles to 
make the elimination move. 

After this sequence, it can be observed that vn has not lost any marble, so it still has its starting 
marble, and it also just gained a marble from the move (vn-1, vn), so it has two marbles.  

Since the graph started with n+1 marbles, and we made n-1 moves, there are only two marbles left, 
and vn has both of them. Then if we simply add the move (vn, vn-1), which is valid since vn has two 
marbles and the edge (vn, vn-1) exists since (vn-1, vn) was a valid move.  

Now the graph has one marble left. So, there is indeed a sequence of marble elimination moves 
removing all but one marble. Thus, Claim 1 is valid. 

Claim 2 – If there exist a sequence of Marbles Elimination moves removing all but one marble, then 
there exists a Hamiltonian Path 

Since we start with n+1 marbles, and each move removes one marble, this sequence must have 
exactly n moves. It can be noted that after we have made zero moves, the only vertex with at least 
two marbles is v1 by construction, which has exactly two. 

Now, suppose after we have made k-1 moves, where 0 ≤ k-1 < n-1, there is exactly one vertex vk that 
has exactly two marbles. Then since k-1 < n-1, we still have more moves in our sequence. Since only 
vk has two marbles, our kth move must be from vk to some other vertex, call it vk+1.  

In the case that vk+1 has no marbles, then no vertices will have two marbles after this move, so we 
can’t make moves, but since k < n we still have moves and that’s a contradiction.  

Now, by hypothesis, vk+1 has less than two marbles, so vk+1 had one marble and after the kth move it 
has two marbles. So, after k moves, there is exactly one vertex, vk+1, with exactly two marbles. 

Thus, the first n-1 moves can be written as the sequence moves (v1, v2) (v2, v3) … (vn-1, vn). 

Since this removes n-1 marbles, there are 2 marbles remaining after this sequence. Then one of the 
marbles must be at vn since that was the last move in the subsequence. Since there is still one more 
move, one of the vertices must have two marbles, and since vn already has one, it must have the 
other. So vn is the only vertex with marbles after the first n-1 moves. And, since vn has exactly 2 
marbles, the nth (final) move should be from vn to some other vertex, that results in a configuration 
where there is only one marble remaining. 

Since each of the other n-1 vertices start with a marble and end with none after the first n-1 moves, 
there must be some move that removes their marble. Since there are exactly n-1 moves in the 
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beginning, there is a bijection between those n-1 vertices and the first n-1 moves corresponding to 
which vertex a move removes marbles from. So, all the vertices v1 … vn are distinct. 

Then consider the path v1 … vn, which visits each of the n vertices exactly once. This is indeed a valid 
path since for 1 ≤ i < n-1, since vi, vi+1 was a marble elimination move, then vi, vi+1 must be an edge. 
So, this is a Hamiltonian Path. Thus, Claim 2 is valid. 

Claim 1 and Claim 2 contribute to the proof of the lemma that there is a Hamiltonian Path if and 
only if any of these Marbles Elimination problems is true. 

From the reduction, running the Marble Elimination algorithm n times, once for each start vertex, so 
this only contributes a polynomial factor. Additionally, to modify the graph each time, simply label 
each vertex in constant time, which takes linear time to do so. Thus, reduction from Hamiltonian 
Path problem to Marbel Elimination takes polynomial time. 

We know Hamiltonian Path problem is NP-Hard, therefore Marble Elimination problem is also NP-
Hard. Now since Hamiltonian Path problem is as hard as Hamiltonian Cycle problem, the Marble 
Elimination problem is also as hard and Hamiltonian Cycle problem. 

Example 

The following graph shows a valid Hamiltonian path. 

 

The corresponding sequence for the game play of the Marble Elimination can be formulated as – 
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Solution (2.a) 

Problem – Given an arbitrary bag D of dominos, is there a legal arrangement of all the dominos in D. 

Lemma – The problem is equivalent to finding a Eulerian path or Eulerian cycle in the graph. 

The Eulerian Cycle problem can be reduced to the given problem using the following strategy – 

Let's represent the set of dominos as a graph G, where each unique integer on a domino corresponds 
to a vertex (vx) in the graph, and each domino represents an edge (vp, vq) connecting the two integers 
(vertices) it contains. This graph is undirected because a domino can be flipped. 

  

Claim 1 – There exists a legal arrangement of all the dominos in D if and only if there exists a Eulerian 
path in the graph. 

Let Ω = (v1, v2) → (v2, v3) → … → (vn-1, vn) be a valid Eulerian path in the graph. Since each vertex vx 
represents a face of a domino, then, any two adjacent edges, say (va, vb) → (vb, vc) share a common 
vertex vb, which indeed means the numbers on adjacent ends of the dominos must match. And, 
since each edge in a Eulerian path is visited exactly once, then each domino is lined up exactly once 
in the sequence. Therefore, Ω is a valid arrangement. 

Thus, Claim 1 is correct. 
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Claim 2 – If there exists a legal arrangement of all the dominos in D, then there exists a Eulerian path 
in the graph. 

Let ϴ = (v1, v2) → (v2, v3) → … → (vn-1, vn) be a valid arrangement of the Dominos in D. Since each face vx 
represents a vertex in G, then, any two adjacent dominos, say (va, vb) → (vb, vc) share a common face 
vb, which indeed means that they share a common vertex vb in G, thus (va, vb) and (vb, vc) are adjacent 
edges in G. And, since each domino in D can be used exactly once, then each edge in G is visited 
exactly once. Therefore, ϴ is an Eulerian path. 

Thus, Claim 2 is correct. 

The correctness of Claim 1 and Claim 2 contributes to proof of the Lemma that the problem is 
equivalent to finding a Eulerian path or Eulerian cycle in the graph. 

Now reduction of the Eulerian path problem to the given problem clearly takes polynomial time as 
we are just looking at each edge in the graph and adding a domino into D based on its two ends. This 
could be achieved by a single pass over all the edges in G, which will take polynomial time.  

Since finding a Eulerian path or cycle is a problem that can be solved in polynomial time. Therefore, 
the given problem can also be solved in polynomial time. 

Example  

The following graph has a valid Eulerian path Ω which can be reduced to a valid arrangement of the 
Dominos ϴ. 
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Solution (2.b) 

Problem – Given an arbitrary bag D of dominos, is there a legal arrangement of a subset of dominos 
from D in which every integer between 1 and n appears exactly twice. 

Lemma – The problem is equivalent to finding a Hamiltonian cycle in the graph. 

The Hamiltonian Cycle problem can be reduced to the given problem using the following strategy – 

Let's represent the set of dominos as a graph G, where each unique integer on a domino corresponds 
to a vertex (vx) in the graph, and each domino represents an edge (vp, vq) connecting the two integers 
(vertices) it contains. This graph is undirected because a domino can be flipped. 

  

Claim 1 – There exists a legal arrangement of a subset of dominos from D in which every integer 
between 1 and n appears exactly twice if and only if there exists a Hamiltonian cycle in the graph. 

Let Ω = (v1, v2) → (v2, v3) → … → (vn-1, vn) → (vn, v1) be a valid Hamiltonian cycle in the graph. Since each 
vertex vx represents a face of a domino, then, any two adjacent edges, say (va, vb) → (vb, vc) share a 
common vertex vb, which indeed means the numbers on adjacent ends of the dominos must match.  

And, since each vertex in a Hamiltonian cycle is visited exactly once, then each integer, say vb, 
appears exactly twice in D, once with the previous edge, say (va, vb), and once with the next edge, say 
(vb, vc).  

Also, since Ω is a Hamiltonian cycle, then every vertex in the graph is covered by Ω. Which in-turn 
means that every integer in the set of D has been explored.  

It can be observed that all edges might not be present in Ω, and no edge is repeated in Ω whatsoever.  

Therefore, Ω is a valid subset of dominos from D in which every integer between 1 and n appears 
exactly twice. Thus, Claim 1 is correct. 

Claim 1 – If there exists a legal arrangement of a subset of dominos from D in which every integer 
between 1 and n appears exactly twice, then there exists a Hamiltonian cycle in the graph. 

Let ϴ = (v1, v2) → (v2, v3) → … → (vn-1, vn) → (vn, v1) be a valid arrangement of the subset of Dominos in D 
in which every integer between 1 and n appears exactly twice. Since each face vx represents a vertex 
in G, then, any two adjacent dominos, say (va, vb) → (vb, vc) share a common face vb, which indeed 
means that they share a common vertex vb in G, thus (va, vb) and (vb, vc) are adjacent edges in G.  
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Now, each face/integer vx appears exactly twice in ϴ, which mean that each vertex vx appears exactly 
once in G. Also, ϴ includes all the integers in D, which means that every vertex vx is also visited. 
Therefore, ϴ is also a Hamiltonian cycle. 

Thus, Claim 2 is correct. 

The correctness of Claim 1 and Claim 2 contributes to proof of the Lemma that problem is 
equivalent to finding a Hamiltonian cycle in the graph. 

Now reduction of the Hamiltonian cycle problem to the given problem clearly takes polynomial time 
as we are just looking at each edge in the graph and adding a domino into D based on its two ends. 
This could be achieved by a single pass over all the edges in G, which will take polynomial time.  

Since finding a Hamiltonian cycle is a problem is NP-Hard, the given problem is also NP-Hard. 

Example  

The following graph has a valid Hamiltonian cycle Ω which can be reduced to a valid arrangement of 
the subset of Dominos ϴ where every integer between 1 and n appears exactly twice. 
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Solution  

Problem – Given an initial configuration of red and blue stones, whether this puzzle can be solved.  

To Prove – The problem is NP- Hard  

To prove that the given problem is NP-Hard, it is sufficient to deduce a polynomial time reduction 
from a known NP-hard problem to the given problem statement.  

Lemma – The given problem is as hard as 3SAT problem.  

Let ф denote a 3CNF Boolean equation with m variables and n clauses. The reduction from ф to the 
given problem can be deduced using the following strategy – 

Let us consider the size of the board is n x m. At the position (p, q) the stones should be placed using 
the following rules – 

1. If the variable xq appears in the pth clause of ф, a blue stone should be placed at (p, q) position 
of the board. 
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2. If the negated variable ~xq appears in the pth clause of ф, a red stone should be placed at (p, 

q) position of the board. 

 
3.  Otherwise, the (p, q) position in the board remains blank. 

Claim 1 – The puzzle is solvable if and only if ф is satisfiable. 

Let’s consider ф is satisfiable. Also, let’s consider an arbitrary satisfying assignment. Then, for each 
index in column q, if xq is True, then remove all red stones from column q. Otherwise, if xq is False, 
remove all blue stones from column q. 

It can be observed that, since every variable appears in at least one clause, each column now 
contains stones of one color only (if any), since a literal say xi can either be a True or a False, not both, 
at the same time. Also, each clause of ф must contain at least one True literal, and thus, each row 
still must contain at least one stone. We can conclude that the puzzle is satisfiable. 

The observations prove Claim 1. 

Claim 2 – If the puzzle is solvable, then ф is satisfiable. 

Let’s assume the puzzle is solved. For each literal xq, assign the value to xq depending on the color of 
the stones left in column q. 

If column q contains blue stones, set xq = True. If column q contains red stones, set xq = False. 
Otherwise, if the column is empty, set any arbitrary assignment to xq. 

It can be observed that, since each row still has at least one stone, so each clause of Φ contains at 
least one True literal, so this assignment makes Φ = True. We conclude that Φ is satisfiable.  
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The observations prove Claim 2. 

Claim 1 and Claim 2 contribute to the proof of the Lemma that the given problem is as hard as 
3SAT problem. The reduction requires only polynomial time since we are just looking the clauses 
and placing the stones in the board accordingly, which can be achieved by only a single pass over 
the sequence of the clauses.  

Now, since 3SAT problem is NP-Hard, the given problem is also NP-Hard. 

Example 

Let Φ = x1 ∧ (~x1 ∨ ~x2) ∧ (~x1 ∨ x2 ∨ x3) ∧ (~x3 ∨ x4) 

On reducing Φ to the given puzzle, the board obtained looks like the following. 

 
 

Now, it can be observed that, x1 = True, x2 = False, x3 = True, x4 = True is a valid assignment and 
satisfies Φ. Thus, on updating the board, the board looks like the following. 

 
 

It can be observed that the board is also solved, with each column containing only single-color stone, 
and each row has at least one stone. 
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Solution  

To Prove – It is NP-hard to decide whether Betal can ferry all n people across the river safely in at 
most k rounds.  

To prove that the given problem is NP-Hard, it is sufficient to deduce a polynomial time reduction 
from a known NP-hard problem to the given problem statement. 

Lemma – The given problem is as hard as Minimum Graph Coloring Problem. 

Given a graph G with n vertices. The reduction from the minimum graph coloring to the given problem 
can be accomplished by the following strategy – 

Assign each vertex vx, 1 ≤ x ≤ n to each deceased person. And, if there exists a dispute between two 
people say, va and vb, there exists an edge (va, vb) in G. 

Claim 1 – Betal can take all the people across the river in k rounds if and only if the graph is k 
colorable. 

Given the graph is k colorable. Now, it means that the vertices of the graph can be colored using at 
most k colors in such a way that no two adjacent vertices have the same color.  

Now, since two enemies share a common edge between them, they are neighbors in G. Thus, no two 
people who are enemies of each other could be assigned with a same color. 

This means, that Betal can take all the people who are assigned with a same color in G together 
across the river, since none of them are enemies of each other. 

This, he must repeat for k time, taking all the people who are assigned with same color across the 
river at a time.  Therefore, Betal can take all the people across the river in at most k round. 

Thus, Claim 1 is true. 

Claim 2 – If Betal can take all the people across the river in k rounds, then the graph is k colorable. 

Let v11, v12, … v1x be the group of people Betal takes in the 1st round. It is certain that these people do 
not share an edge between them. Thus, all these people can be assigned the same color, say k1. 

Now, let v21, v22, … v2y be the group of people Betal takes in the 2nd round. It is certain that these people 
also do not share an edge between them. Thus, all these people can be assigned the same color, say 
k2, which is different from the color k1. 
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Now, let vk1, vk2, … vkz be the group of people Betal takes in the kth round. It is certain that these people 
also do not share an edge between them. Thus, all these people can be assigned a same color, say 
kn that is different from all the previously assigned colors (k1, k2 … kn). 

After k rounds, Betal has taken all the people across the river, thus no vertex in the graph remains 
uncolored. Also, from all k rounds, it is for sure that no two enemies share the same color. Thus, the 
graph has been colored in such a way that each vertex has been colored in such a way that no two 
neighboring vertices have been assigned the same color.  

Therefore, the graph is k colorable. Thus, Claim 2 is true. 

Claim 1 and Claim 2 contribute to the proof of the Lemma that the given problem is as hard as 
Minimum Graph Coloring Problem. The reduction requires only polynomial time since we are just 
looking at the pair of enemies and adding edge between them, which can be achieved by only a single 
pass over all the pair of enemies, which will take polynomial time.  

Now, since Minimum Graph Coloring Problem is NP-Hard, the given problem is also NP-Hard. 

Example 

Given the following graph is 3 colorable. That is, the graph requires at least 3 colors to color each of 
its vertices such that no two neighboring vertices are assigned a same color. 

 

Now, considering each vertex denotes a person, and an edge between two vertices exists only if they 
are enemies. Then Betal can take all the people across the river in 3 rounds. In the 1st round, he will 
take all people marked as red across the river. In the 2nd round, he might take all the people who are 
marked as blue across the river. And in the third round he needs to take all the people who are 
marked as green across the river. Since, in all three rounds, no two people share an edge between 
them, they are not enemies and they do not engage into fights. Thus, all reach the other side safely 
(expecting that corpses don’t fight on land). 

  



 
 
 
 

Part 2 
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Solution 1 
 

Let's consider a subset Y' of Y and define S as the collection of all edges adjacent to any 
vertex within Y'. Given that every vertex in X connects to at least a vertex in Y', the set S should 
have at least the size of a times the cardinality of Y', that is |S| ≥ a|Y’|.  

Conversely, each vertex in X is connected to no more than 2b vertices in Y'. Thus, 2b times 
the cardinality of set N(Y'), representing neighbors of any subset Y' of Y, is at-most |S|, or 
2b|N(Y’)| ≤ |S|.  

Combining these we get a|Y’| ≤ 2b|N(Y’)| and with the condition that ‘a’ is greater than or 
equal to ‘2b’, we derive N(Y') is at least as large as the cardinality of Y', that is |N(Y’)| ≥ |(Y’)|. 
By Hall's Theorem, we can conclude that there is a matching M that includes every vertex of 
Y. 

Now, for each index ‘i’ ranging from 1 to m, let's identify Qi as the pair of vertices in X that are 
connected to both Wi and Wi'. The collection of sets Q1 through Qm forms a disjoint two-
element subset of X, and each Wi contains its respective Qi.  

A strategy that ensures at least a draw for the second player – Whenever the first player 
picks a vertex, if that vertex is in Qi for some ‘i’, the second player should respond by 
choosing the remaining vertex in Qi if it's still available. If not, the second player can make 
any move. It's clear through induction that after each move by the second player, there's no 
set Qi from which the first player has chosen a vertex, and the second player hasn't. This 
implies the first player cannot select both elements from any Qi, and thus cannot cover all 
elements of any Wi. As a result, the first player cannot win when the second player follows 
this strategy. 
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Solution (2.a) 
 

Let the cards ф = {A, B, C, D} form a twin set.  

Let us assume that the twin set indeed contains three cards that are already a set. Let it be 
the cards {A, B, C}. Now let us assume that there exists a firth card E, which when added to 
ф, makes two Sets.  

Now, the newly formed Sets could be one of the following – 

ABE and CDE ACE and BDE BCE and ADE 

Note that for either of the cases to be true, either ABE or ACE or BCE should form a set.  

But ABE cannot form a set since ABC is already a set, which violates the unique completion 
rule. For the same reason, neither ACE nor BCE can form a set. 
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Thus, our initial assumption is wrong. Therefore, a twin set cannot contain three cards that 
are already a set. 

 

 

Solution (2.b) 
 

Let {A, B, C} be the given cards that do not form a Set. 

Now, let us assume that there is a card X1 that forms a set with A and B. That is {A, B, X1} is a 
set. Now from the unique completion rule, we know that there exists a card Y1 that makes a 
set with X1 and C. Thus, {X1, C, Y1} is a set. Apparently, {A, B, C, Y1} is a twin set (with X1 as 
joint). 

Also, let us assume that there is a card X2 that forms a set with A and C. That is {A, C, X2} is a 
set. Now from the unique completion rule, we know that there exists a card Y2 that makes a 
set with X2 and B. Thus, {X2, B, Y2} is a set. Apparently, {A, B, C, Y2} is a twin set (with X2 as 
joint). 

Also, let us assume that there is a card X3 that forms a set with B and C. That is {B, C, X3} is a 
set. Now from the unique completion rule, we know that there exists a card Y3 that makes a 
set with X3 and A. Thus, {X3, A, Y3} is a set. Apparently, {A, B, C, Y3} is a twin set (with X3 as 
joint). 

For the fourth card Y4 to exist such that {A, B, C, Y4} is a twin set, there must exist a 
corresponding joint card X4. Now, the card X4 is supposed to form a set with either AB, or BC, 
or AC. This is however not possible as there exists a card X1 that forms a set with AB, X2 with 
AC and X3 with BC. Thus, the existence of X4 will violate the unique completion rule.  

Therefore, given the three cards, there are exactly three other cards that will form a twin 
set with those three cards. 

 

 

Solution (2.c) 
 

Let us assume that there exists a twin set {A, B, C, D} such that three cards satisfy the same 
property while the fourth doesn’t. As given, let’s take color as the property. Let A, B and C be 
red, while D is some other color, say purple. 
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A  B  C  D 
       

 

Now, let X be the joint card for the twin set {A, B, C, D}. Now, splitting {A, B, C, D} into two will 
result in two cards on each side. Now, no matter what we do, two red cards will always end 
up on the same side (by pigeonhole principal).  

A  B    C  D 
         

 

Now for X to make a set with the cards on the left (A and B), since both are red, X needs to be 
red. But, doing so, it won’t form a set with the cards on the right (C and D), since C is red, 
and D is purple. 

 

For X to make a set with the cards on the right (C and D), since both of their colors are 
different, X needs to have a different color (Green). But, doing so, it won’t form a set with the 
cards on the right (A and B), since both are red. 

 

Thus, both the choices contradict each other. Therefore, our assumption was wrong. This is 
true for the other properties as well. This proves that if there are three of one and one of 
another, then it’s not a twin set.  
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Solution (2.d) 
 

Let us assume that {A, B, C, D} is the given twin set. Let X be the joint. This means that {A, B, 
X} is a set and {X, C, D} is a set. 

Now let us assume that there exists a card Y, that is not X, and is the joint for the twin set {A, 
B, C, D}. Clearly, Y cannot split {A, B, C, D} as AB and CD, because that will infer {A, B, Y} and 
{Y, C, D} are set, which violates the unique completion rule. Thus, Y needs to spit {A, B, C, D} 
to some other pair, say, AC and BD. 

We need to show either {A, C, Y} or {Y, B, D} is not a set. 

Let us assume that {A, C, Y} or {Y, B, D} are valid sets. 

Let Kh be the vector representing the characteristics of the card K (for eg. Kh = [1, 2, 1, 1]T).  
Now, from the rules of set, we know that for {A, B, X} to be a set, 

(Ah + Bh + Xh) mod 3 = ф, where ф = [0, 0, 0, 0]T (Finding 1) 

Similarly,  

(Xh + Ch + Dh) mod 3 = ф (Finding 2) 
(Ah + Ch + Yh) mod 3 = ф (Finding 3) 
(Yh + Bh + Dh) mod 3 = ф (Finding 4) 

From Findings 1 and 3, we get (Bh + Xh) mod 3 = (Ch + Yh) mod 3 (Finding 5) 
From Findings 2 and 4, we get (Xh + Ch) mod 3  = (Yh + Bh) mod 3 (Finding 6) 

From Findings 5 and 6, we get, (Xh + Ch - Yh + Xh) mod 3 = (Ch + Yh) mod 3 
      Or, (2Xh) mod 3 = (2Yh) mod 3 

Now, this is only possible if and only if X and Y have exact feature set. But this contradicts 
our assumption that there exists some Y that is different from X and forms a twin set as a 
joint in {A, B, C, D}. Thus, given any twin set, the joint is unique. 

 

 

Solution (2.e) 
 

The twin set consists of 4 cards. Considering the standards deck, for the first card, we have 
a total of 81 choices. 
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81 

   

For the second card, we have a total of 80 choices. 

 
81 

 
80 

  

Now, we know from (2.a) that a twin set must not contain a set within itself. Thus, for the 
third card we have a total of 78 choices (79 minus one card that makes the set with the first 
two cards). 

 
81 

 
80 

 
78 

 

Form (2.b) we know for the fourth card we have only 3 choices. 

 
81 

 
80 

 
78 

 
3 

Now, we know, these 4 cards can arrange themselves in 4! (24) Ways, so the total 
calculation comes out to be (81 x 80 x 78 x 3) / (24) = 63180.  

Thus, the total twin sets in a standard deck is 63180. 

 

 

Solution (2.f) 
 

Let X = {A, B, C} be three cards that do not form a Set. Let Y = {D, E, F} be the three cards that 
each create a twin set with X. Let Z = {P, Q, R} be the three cards that are the joints of those three 
twin sets. 

This means,  
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• {A, B, C, D} is a twin set and P is a joint such that {A, B, P} and {P, C, D} are sets. (Finding 1)  
• {A, C, B, E} is a twin set and Q is a joint such that {A, C, Q} and {Q, B, E} are sets (Finding 2) 
• {B, C, A, F} is a twin set and R is a joint such that {B, C, R} and {R, A, F} are sets. (Finding 3) 

To prove: Any card in Z creates a twin set when joined with three cards in Y (X as joint). 

Claim 1: {D, P, E, F} is a twin set with C as joint. 

Clearly, with C as joint, {D, P, C} is a set (from Finding 1). We need to show that {C, E, F} is 
also a set. 

Let Kh be the vector representing the characteristics of the card K (for eg. Kh = [1, 2, 1, 1]T).  
Now, from the rules of set, we know that for {A, C, Q} to be a set, 

(Ah + Ch + Qh) mod 3 = ф, where ф = [0, 0, 0, 0]T (Finding 4) 

Similarly,  

(Qh + Bh + Eh) mod 3 = ф (Finding 5) 
(Bh + Ch + Rh) mod 3 = ф (Finding 6) 
(Rh + Ah + Fh) mod 3 = ф (Finding 7) 

Now, from Finding 4 and 7, we see (Ch + Qh) mod 3 = (Rh + Fh) mod 3 (Finding 8) 
And, from Finding 5 and 6, we see (Qh + Eh) mod 3 = (Ch + Rh) mod 3 (Finding 9) 

From Finding 8 and 9, we can infer (Ch + Ch + Rh - Eh) mod 3 = (Rh + Fh) mod 3 
Or (2Ch) mod 3 = (Fh + Eh) mod 3 
Or (3Ch) mod 3 = (Fh + Eh + Ch) mod 3  

Now, clearly, (3Ch) mod 3 = ф.  
Therefore, (Fh + Eh + Ch) mod 3 = ф. Thus, {C, E, F} is a set. (Finding 10) 

Also, we observe from Finding 10 (a generalized form), if {T1, T2, T3} is a SET, {T3, T4, T5} is a SET, 
{T2, T4, T6} is a SET and {T6, T1, T7} is a SET, then, (T2, T5, T7) is also a SET. (Finding 11) 

This proves Claim 1. 

Claim 2: {E, Q, D, F} is a twin set with B as joint. 

Clearly, with B as joint, {E, Q, B} is a set (from Finding 2). Now, it can be proved that {B, D, F} 
is also a set using Findings 1, 3 and 11. Thus, Claim 2 is true. 

Claim 3: {F, R, D, E} is a twin set with A as joint. 

Clearly, with A as joint, {F, R, A} is a set (from Finding 3). Now, it can be proved that {A, D, E} 
is also a set using Findings 1, 2 and 11. Thus, Claim 3 is true. 

The correctness of Claims 1, Claim 2 and Claim 3 proves that any card in Z creates a twin set 
when joined with three cards in Y (X as joint). 
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To prove: Any card in X creates a twin set when joined with three cards in Z (Y as joint). 

From the previous proof we have, 

• {D, P, E, F} is a twin set and C is the joint, thus, {D, P, C} and {C, E, F} are sets. (Finding 12)  
• {E, Q, D, F} is a twin set and B is the joint, thus, {E, Q, B} and {B, D, F} are sets (Finding 13) 
• {F, R, D, E} is a twin set and A is the joint, thus, {F, R, A} and {A, D, E} are sets. (Finding 14) 

Claim 1: {P, Q, R, A} is a twin set with F as joint. 

Clearly, with B as joint, {F, R, A} is a set (from Finding 14). Now, it can be proved that {P, Q, F} 
is also a set using Findings 12, 13 and 11. Thus, Claim 1 is true. (Finding 15) 

Claim 2: {Q, R, P, C} is a twin set with D as joint. 

Clearly, with B as joint, {D, P, C} is a set (from Finding 12). Now, it can be proved that {Q, R, 
D} is also a set using Findings 13, 14 and 11. Thus, Claim 2 is true. (Finding 16) 

Claim 2: {R, P, Q, B} is a twin set with E as joint. 

Clearly, with B as joint, {E, Q, B} is a set (from Finding 13). Now, it can be proved that {R, P, 
E} is also a set using Findings 12, 14 and 11. Thus, Claim 3 is true. (Finding 17) 

The correctness of Claims 1, Claim 2 and Claim 3 proves that any card in X creates a twin set 
when joined with three cards in Z (Y as joint). 

 

To show that the nine cards form a “plane” or “magic square”. 

While there can be more than one possible magic square that are possible with these nine 
cards. One such magic square is as follows. 

 
A 

 
B 

 
P 

 
F 

 
E 

 
C 

 
R 

 
Q 

 
D 
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Rows –  
{A, B, P} is a SET (from Finding 1) 
{F, E, C} is a SET (from Finding 12) 
{R, Q, D} is a SET (from Finding 16) 

Columns – 
{A, F, R} is a SET (from Finding 14) 
{B, E, Q} is a SET (from Finding 13) 
{P, C, D} is a SET (from Finding 12) 

Diagonals – 
{A, E, D} is a SET (from Finding 14) 
{P, E, R} is a SET (from Finding 17) 

This proves that the nine cards form a “plane”. 
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Solution (3.a) 
 

Number of ways a 3 × 3 grid be filled with five X marks and four O marks so that each grid location is 
filled with exactly one mark, considering rotation or reflection as distinct configurations, can be 
obtained as 9C5 = 9! / (5! X 4!) = 126. 

 

 

Solution (3.b) 
 

With X in the center. We are supposed to put 4 more X(s) and 4 O(s) such that the configuration is a 
draw.  

 

Now, out of the 8 void spaces, we can at most put two X(s) at the corner, otherwise, it will be winning 
for X and they should not be on the opposite corners. Similarly, we can at-most put two X(s) on the 
side, and both should not be on the opposite side. 

From the two observations we can infer that we need to put exactly two X(s) on corner (non-
opposite) and exactly two X(s) at the sides (non-opposite). The following figure displaces the 
possible configurations. 

 

Apparently, both of them are reflections of each other. Thus, considering reflection and rotation 
configs are non-distinct, there is only one configuration with X at center and resulting in a draw. 
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All the other configurations can be obtained by rotation and reflection of this configuration. 

 

 
 
Solution (3.c) 
 

Considering rotation or reflection do not count as distinct configurations, then with X at the 
center there are a total of 13 unique configurations.  

 

With O at the center, there are a total of 10 unique configurations. 
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Thus, out of 126 configurations, there are a total of 23 unique configurations using 5 X(s) and 4 
O(s). All the other configurations are either rotation or reflection of these 23 configurations. 
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Solution 4 
 

The process is as follows – 

Start by grouping the cards into sets of duplicates. Two cards are considered duplicates if 
they become identical through either axial or central rotation.  

For any group of duplicates larger than four, discard cards until only four remain, as a 
maximum of four duplicates can be utilized in a single swish.  

Next, create a compatibility graph G: represent each card as a vertex, and draw an edge 
between two cards, Ci and Cj, if one has a dot at position ‘a’ and the other has a circle at the 
same position.  

                           

The goal is then to find the largest matching M in G; if the size of M is at least k, the answer is 
YES; if not, it's NO.  

This method is efficient because once a card is matched, it cannot be matched again unless 
its duplicate is used, which is manageable since each card contains only one symbol. 
Trimming duplicates can be done quickly with a hash table, constructing the graph and 
finding the maximum matching are both tasks that can be completed in polynomial time. 

This proves that the problem can be solved in polynomial time if every card has at most 
one symbol. 
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Solution 5 
 

Let us simulate the prediction made by each of them. 

As per Lata, blue should play on the location labelled as a. And then red counters the move 
by playing at location b. Next, as per Lata, blue should win by playing at either of the location 
c or d.  

Let us assume blue played his/her move at the location c. 
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At this point, the minimum number of moves required by blue to win 3 is 3, marked as 
unfilled blue circles image below. Also, the minimum required moves for red to win is 3, 
marked as unfilled red circles in the image below.  

 

So red will choose to put the mark at overlapping position to mess up blue’s winning 
strategy.  

This will open up new winning possibilities for red, and as blue there is only a single position 
where it can play to not to lose, marked as green in the image below. 
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Blue will play its next move at the green marked position. This will however block any further 
moves by red. That is, for each move played by red in any of the yellow circle, blue has a 
countermove to cut off the red’s spread. Thus in its next move, there is no point for red to 
play at the positions marked as yellow in the following image. 

 

Now, blue needs at least 4 more moves to win from this point. While red needs only 3 more. 
Red will choose to play at a position at overlapping winning for blue, for messing up with 
blue’s winning strategy. 
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This will open up new winning positions for red again. And as blue, there is only a single 
position that can be played to not to lose, marked as green in the image below. 

 

Playing so, blue now safekeeps all the positions marked with yellow, and any move that red 
plays on any yellow position, blue has a countermove to cut up the reds spread. 

 

At this point, blue safekeeps all the points marked with yellow in the image below, and for 
each of red’s move, blue has a counter-move. 



Soumyaratna Debnath | Page 19 of 20 
 

 

Since red cannot win this game, as blue has a countermove for each move played by red, 
we conclude that blue will win and Lata was right about her prediction. 

Now, this is true even if red had played d rather than c in the second move. 

Now, coming to Raj’s prediction. Let’s suppose positions a and b are empty and blue play’s 
at position c. 

At red’s move, we can see, red’s needs a minimum of four more moves to win. And whatever 
winning path red has in his/her mind, either green, or violet or orange (image below), they all 
have in common the position ‘b’. So, to maximize his/her chance of winning it’s logical for 
red to play at position ‘b’ (topmost position).   

 

After red plays at ‘b’, blue just needs to play at position ‘a’, and as we have proved that this 
configuration (image below) with red to move is a wining for blue (from Lata’s argument), we 
can conclude that blue will win from this point and Raj’s argument is also correct. 
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Thus, both Lata's and Raj’s argument are correct, and indeed blue packs a win! 

 

 

 

 



 
 
 
 

Part 3 
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Solution 1.a 

For n = 420, defense budget is 419 

 

 

Solution 1.b 

For n = 420, election budget is 233 

 

 

Solution 1.c 
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With n = N, the defense budget can be given as D(N) = N – 1. 

This can be proved from the following inference. Consider the following notation – 

 

With, N – 1 guard, Candyland can be defended forever as shown below. 

 

Now, it is clear that N – 1 guard can protect Candyland from the Demons forever. Now we need to 
verify if there exists any number less than N – 1 that can protect Candyland forever from the Demons.  

With even N – 2 guards, the attackers have a strategy to destroy Candyland as shown in the images 
below. 

Instance 1 Instance 2 
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Thus, N – 1 is indeed the minimum number of guards required to protect Candyland from the Demons 
forever. Therefore, Defense Budget D(N) = N – 1. 

 

 

Solution 1.d 

Consider the following notation – 

 

One efficient way to protect Candyland with the minimum number of guards is to place them in 
alternating houses as shown below. 

 

The number of guards required for this is floor(N/2). But this configuration will only protect 
Candyland for 1 hour. Also, we can infer, that if there exists an adjacent empty nodes (unguarded 
house) at positions p and p + 1, the attackers can corner them in at-least p attacks, and in the next, 
that is (p + 1)th attack, they can destroy Candyland, as shown in the image below. 
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Here, the empty nodes were in the positions 3 and 5, and attacker can corner the void nodes in 3 
moves and in the 4th attack, they win. 

Thus, protecting Candyland for 24 hours will mean protecting it from 24 attacks. This can be achieved 
as the following – 

Let us assume that the n nodes/houses are in line as follows – 

 

 

Let us assume we need to protect it from a total of x attacks. So, all the first x-1 positions are to 
assign with guards, and the first unguarded position is x. This will ensure that it takes at least x moves 
for the attacker to corner the voids.  

 

Now, this has to be done from the other end as well, since the map is symmetric. This results in 
placing of more x-1 guards to the map. 
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Finally, in the remaining n - 2(x - 1) houses in the middle, the guards could be placed optimally, that 

is, 𝒇𝒍𝒐𝒐𝒓 (𝒏−𝟐
(𝒙−𝟏)

𝟐
) 

 

Therefore, the election budget E(N) can be given as   

E(N)  =  2(x − 1)  +  floor (
N  −  2(x  −  1)

2
) 

Since, x = 24, we get 

𝐄(𝐍)  =  𝟒𝟔  +  𝐟𝐥𝐨𝐨𝐫 (
𝐍  −  𝟒𝟔

𝟐
) 

 

Example – 

Suppose there are N = 26 houses, and we need to protect them for x = 10 hours. 

Plugging the values to the equation, we get, the minimum number of guards required = 22. 
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Solution 1.e 

For n = 420, the defense budget for Lalaland is 210. 

 

 

Solution 1.f 

For n = 420, the election budget for Lalaland is 210. 

 

 

Solution 1.g 

Consider the following notation – 

 

Lalaland can be visualized as a cyclic graph. The minimum number of guards required to protect 
Lalaland with n = N houses for 1 hour can be given as ceil(N/2). This is evident from the examples 
below. 
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n = 4 n = 5 n = 6 n = 7 n = 8 
 

Now, it can be proved that ceil(N/2) number of guards are enough to protect Lalaland from the 
attacks forever. This can be proved from the following instances. 

                                                              

                                                              

Winning strategy for the defender – Any attack from the attacker can be countered by moving all 
the guards to the same direction, which results in rotationally equivalent configuration. Thus, 
protecting Lalaland forever. 

Therefore, for Lalaland, defense budget 𝐃(𝐍)  =  𝐜𝐞𝐢𝐥 (
𝐍

𝟐
) 
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Solution 1.h 

The election budget for Lalaland is the same as the defense budget. This is clear from the figure 
below. 

 
    

n = 4 n = 5 n = 6 n = 7 n = 8 
 

Removing even a single defender from any of the graph above will make Lalaland undefended. Thus, 
the minimum number of guards required to protect Lalaland with n = N houses for 24 hours can be 
given as ceil(N/2).  

Therefore, for Lalaland, election budget 𝐄(𝐍)  =  𝐜𝐞𝐢𝐥 (
𝐍

𝟐
) 
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Solution 2 

Consider the following notation – 

 
Pirate 

     
Policemen 

Let us assume that Raj manages to win the game. This means that the configuration of the board is 
as exactly as shown in the image below (which is indeed the only winning configuration for Raj) and 
it’s Lata’s chance to play. 

 

If we trace back a move from Raj, that is undo the move Raj last played, the only two unique board 
configurations before Raj plays his winning move are as follows – 
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All the other possible configurations are symmetrically equivalent to these two configurations. Now, 
if we trace back one more move, that is, undo the move that Lata has played that has resulted in any 
of the board configurations listed above, we get the followings – 

 
 

All the other possible configurations are symmetrically equivalent to these two configurations. 

Now, considering Lata is skilled enough to know that moving at the position marked in red below will 
result in a defeat for her, she would never move her piece to that position, rather she will move her 
piece to green position. Also, whenever this kind of situation will arrive, Lata will always have an 
option, that is, there will always be a green location for her to move if she plays optimally. 

  
 

Thus, if Lata plays optimally, Raj will never be able to catch the pirate. 
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Solution 3 

Considering the following notation,  

 

The value of the game is the sum of the values of each segment. 

The given game consists of four segments. The value of the two of the 
segments are known to be 0 and -1. The value of the other two segments 
can be computed considering one at a time. 

 

 

 

The value of the bottom segment can be computed as follows, 
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The value of the rightmost segment can be computed as follows, 

 

 

Now, combining the value of all four segments we get the value of the board, that is, 

Value of the game = 0 + (-1) + {-1 | -1} + {+1 | -1}  

Therefore, the value of the game board is (-1) + {-1 | -1} + {+1 | -1}. 
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Solution 4.a 

 
Considering the following notation,  

 

 

The value of each Hackenbush pile can be obtained by bottom-up fashion. 
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The combined value of the given Hackenbush piles can be obtained by summing the value of each 
pile, that is, (3/8) + (45/16) = (51/16) = 3.187 
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Solution 4.b 

Considering the following notation,  

 

The value of the Hackenbush pile can be obtained by bottom-up fashion. 

 

Therefore, the value of the given infinite Hackenbush pile is approximately 1.4. 

Alternatively, the value of the Hackenbush pile can also be computed using the idea that the pile 
resembles its value in binary.  

 

We know the value of the pile should be between 1 and 2. On computing, the value comes out to be 
1.399, which is approximately 1.4. Thus, the value of the given infinite Hackenbush pile is 1.4.  
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Solution 4.c 

For the given game, Blue has a winning strategy.  

The following are the substates of the game that are for sure winning for blue as its values are 
greater than 0.  

 

Winning strategy for Blue – It does not matter who starts the game, blue should target all the green 
segments first and should play the blue segment only if no green segment is remaining. Doing so, it 
is guaranteed that the game will end up as one of the nine states listed above, regardless of whatever 
move red chooses to play. And for sure, it’s a winning for blue. 

Therefore, Blue wins the game regardless of whoever starts. 

 

  



Soumyaratna Debnath | Page 17 of 18 
 

 
Solution 

Given the game state, 

 
 

  

Let us assume that the game has ended, the end sate of the game will look like the following, 

  
 

 
 

=  0    

We can evaluate the game in the reverse order. 

   
 

 

= {   
 

 
 

|  } 
 = { 0 |  }  = 1 

 

    
 

= {  |     
 

} 
 = {  | 0 }  = -1 

 

    
 

= {  |     
 

} 
 = {  | 1 }  = 0 

 

    
 

= {     
 

|  } 
 = { -1 |  }  = 0 

 

    
 

= {     
 

|     
 

} 
 = { 0 | 0 }  = * 

 
    

 

= {  |     
 

} 
 = {  | 0 }  = -1 

 

    
 

=  0    
 

    
 

= {     
 

|     
 

} 
 = { -1 | 0 }  = -1/2 = - 0.5 
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= {  |     
 

} 
 = {  | * }  = 0 

 

    
 

= {     
 

|     
 

} 
 = { 0 | - 0.5 }  

 

Thus, the game value of the given game state is { 0 | – 0.5 }  

 


